56 3. THE FUNDAMENTAL GROUP

THE WIRTINGER PRESENTATION. This section describes a procedure for writing

down a presentation of the group of a knot K in R3 , given a 'picture'

of the knot. By a picture I mean a finite number of arcs Uys wees @ in

a plane P (say, the x-y plane). Each ay is agsumed connected to G i1

and (mod n) by undercrossing arcs exactly as pictured below. The

%141

union of these is the knot K .

e

THE ALGORITHM. We assume for convenience that the ai are oriented

(assigned a direction) compatibly with the order of their subscripts. Draw

a short arrow labelled Xy passing under each &y

tion. This is supposed to represent a loop in R3 - K as follows. The

in a right-left direc-

point (0, 0, 1) = % 18 taken as basepoint (best imagined as the eye of the
viewer), and the loop consists of the oriented triangle from « to the

tail of x along x; to the head, thence back to % .

i ’
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Now at each crossing, there 1is a certain relation among the xi's

which obviously must hold. The two possibilities are :

7&, lﬂi;' i+ X X X, °€£+l
1 e
X, —
X
ry ¢ XXy T XX % 5 X141

Here a, is the arc passing over the gap from a, to (k =i or

1 ®4+1

i+l 1is possible). Let r, denote whichever of the two equations holds.

i
In all, there are exactly n relations Tys oeey T which may be read off

this way. We will see that these comprise a complete set of relationms.

THEOREM : The group nl(R3 - K) 1is generated by the (homotopy classes of

the}) x, and has presentation

i

nl(R3 S I C U O N I

Moreover, any one of the ry wmay be omitted and the above remains true.
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EXAMPLE : For the figure-eight knot, we
have a presentation with generators

L SRY x3, x, and relations
(1) X X3 = XX,

(2) x

(3) XX = XX,

We wmay simplify, using (1) and (3) to eliminate xy = xglxle and

X, = Xy XX and substitute into (2) to obtain the equivalent presentation

3 = ¢ -1 - -1
wl(R - figure—eight) = (xl, X35 Xy XX Xy X Xy = AgXy x3x1) .

EXERCISE : Show combinatorially that the fourth relation (xzx4 = xlxz)

is a consequence of the other three.

EXERCISE : Verify that the figure—eight knot 1s nontrivial. (Try mapping

its group onto a nonabelian finite group, as in lemma B4).

PROOF OF THEOREM 2 : Recall that K 1lies in the plane P = {z = 0} of

R3 , except where it dips down by a distance e at each crossing. In

order to apply Van Kampen's theorem, we dissect X = R3 - K into n+2

pleces A, Bl’ o &6 3 Bn, and C . Let
A = {z>-¢e}-K.

The lower boundary of A is the plane P' = {z = - ¢} with n 1line
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segments Bl’ T Bn removed. Let Bi be a solid rectangular box whose
top fits on P' and

surrounds B But we

i L]
remove Bi itself from

Bi , and (in order that

Bi contain % ) adjoin an

arc running from the top,
straight to » , missing
K . The Bi may be taken

to be disjoint from one

another. Finally, let

C = the closure of everything below A U By V... UB_,
plus an arc to =« .

..-,'X (]

EXERCISE ¢ Verify that ﬂl(A) is a free group generated by Xy i

Now we investigate the effect of adjoining Bl to A . B, itself

1
1s simply-connected, and Bl N A 1is a rectangle minus Bl’ plus the arc
to %, 8o ﬂl(Bl N A) 1s infinite cyclic, with generator y . As is
clear from the picture, when y 1s included in A, it becomes the word
xkxilxilxz (here we are assuming the crossing is of the first type). Thus,
by Van Kampen, wl(A U Bl) has generators X1> sees X and the single
relation xkxIIXEIXZ = 1 . This is equivalent to XX = XX o which 1s

T Thus

1

ﬂl(A W Bl) = (xl, seey X5 rl)
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Similarly, adjoining B2 , we argue that
WI(A v B]. U BZ) - (xl’ srey xn; rl’ r2) )
et cetera, so that

ﬂl(A U Bl Uo... U Bn) = (xl, cres Xp3 Tys eeey rn) .

Finally, adjoining C to A U B1 \Jooee U Bn has no effect on
the fundamental group, since both C and C M (A U B1 U o« U Bn) are

simply-connected.

This completes the proof, except for the observation that one of

3 3

the ry (say rn) 1s redundant. To see this, work in S = R~ + « , Let

A' = A+ and C' = Bn \)J C+ =, It is clear that

3
A' ) B, U ... VU Bn—l U C' =58 -K, ﬂl(A') = nl(A), and adjoining
Bl’ cees Bn-l has the same effect as before. But now we note that

c' N @' v B, U ... U Bn~ is simply~connected, being a 2-sphere minus

1)
an arc, and so is C' . Thus we reach the same conclusion without adjoining

the relation rn 2

EXAMPLE : We recompute the group of the trefoil /

using the Wirtinger method. -y



10,
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We have generators X, Y, z and relations xz = zy, yx = xz .
The second may be used to eliminate z = x-lyx , which converts the first
relation to yx = x-lyxy . Thus we have another presentation for the

trefoil group

62,3 = (x, ¥; Xyx = yxy) .

EXERCISE : Show directly that this is equivalent to the presentation

{a, b; az = b3) .

EXAMPLE : The square knot

A
.‘-----'E\\\.-.-::) 2

We may use a short-cut by

considering the complement of :

w
It is clear that this has the homotopy ¥ :

type of the complement of the trefij "\
Likewise for the complement of :
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The union of these complements gives the complement of the square knot, so

we use Van Kampen's theorem to see that :

Group of the square knot
= (X, ¥, W, 2] XYX=VXY, W2ZW = 2ZWZ, X = W)

= (X, ¥, Z} XYX = yXy, XzZX = ZXZ).

Il. EXAMPLE l,(
- L - ®
A

Group of the Gramny knot

2

= (x, ¥y, Z} XyX = yXy, XzX = zxz)
is 1somorphic with the group of the square knot.

It happens that, in fact, the square and granny knots are not
equivalent although the methods we have discussed so far do not distinguish

them. When we do this (gsee 8E15 ) we will have established

I;l. THEOREM : The group of a knot is not a complete knot invariant (that is,

K rann ﬂl(R3 - K) 4is not one-to-one).

L3, NOTE : The complements of the square and granny knots are actually not

homeomorphic, as is shown by Fox [1952] using "peripheral structure” of Ty



’ﬁn EXERCISE : Compute a presentation

IS,

E. REGULAR PROJECTIONS 63

for the group of the knot shown

here. Show that it has a presentation

0

with only two generators and one

relation.

J

G

REMARK : Given two knot group presentations, it is often quite difficult to
prove that they present non-isomorphic groups. Later we will develop knot
invariants which are much more readily compared to distinguish knots and

1inks.

REGULAR PROJECTIONS. The usual way of describing a knot is by drawing a
plcture, as described above. That this algorithm applies to arbitrary tame

knots, is the object of the following exercises.

Let K be a polygonal knot in R3 + Let P be any plane and

p: R3 —> P the orthogonal projection. Say that P 1s regular for K
provided every p-l(x), x € P, i1intersects K in 0, 1 or 2 points and,

if 2, neither of them 1s a vertex of K.

EXERCISE : Given any polygonal K and plane P, one can make P regular

for K by arbitrarily small perturbations of either P or K .
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EXERCISE : Let K be a polygonal knot with vertices Vs sees Voo Then

there exists a positive number ¢ = ¢(K) such that whenever v;, ceey v;

3

are points in R with Ivi - vil < ¢ for all i, the polygon

viv' is also a knot, and is ambient isotopic to K .

- !
K v 17 VY%

LI
v
o

EXERCISE : If P 4is regular for K , then K is ambient isotopic to a

knot of the type described in the section on the Wirtinger presentation.

DEFINITION : The deficiency of a group presentation equals the number of

generators minus the number of relations.
COROLLARY : Every tame knot group has a finite presentation of deficiency one

EXERCISE : Use the Wirtinger algorithm to prove that the abelianization of
any tame knot group 1s infinite cyelic. (This also follows from exercise

2E6 , since = abelianized 1s H1 and holds for wild knots as well.)

1

EXERCISE : Show that no (tame) knot group has a presentation with deficiency

tWOC

EXERCISE : Every tame knot in R3 possesses a tubular neighbourhood, which
itself is equivalent to a polyhedron in R3. Components of a tame link in

R3 have disjoint tubular neighbourhoods.



